
The SQALE Quality and Analysis Models for

Assessing the Quality of Ada Source Code

Thierry Coq1 and Jean-Pierre Rosen2

1 DNV France, Paris, France thierry.coq@dnv.com, http://www.dnv.com
2 Adalog, Issy-les-Moulineaux, France rosen@adalog.fr, http://www.adalog.com

Abstract. This article presents the quality and analysis model of the
SQALE assessment method of software source code. It explains how an
Ada quality model compliant to SQALE is implemented and the results
of its application to selected software, and how the use of Ada reduces
the quality debt unlike many other technologies.

1 Introduction

Det Norske Veritas (DNV) is a not-for-profit organization specialized in risk
management. As such, we are conducting research in the measurement of soft-
ware quality (qualimetry). We discovered that the analysis model, and more
precisely the rules used for aggregating raw measures, is a key factor for the ef-
fective implementation of qualimetry. This paper introduces the analysis model
of the SQALE (Software Quality Assessment Based on Lifecycle Expectations)
method to assess the quality of software and in particular software source code.
A detailed view of SQALE has been presented in our white paper [1]. The quality
model of SQALE and its application to real-time or embedded software has been
described in [2]. Its particular strength resides in its compliance to the repre-
sentation clause [3]. The SQALE method is open source and freely available [4].
Several tool vendors provide implementations for various languages such as C,
C++, Java and Cobol. We explain in this paper how the SQALE for Ada quality
model is developed in compliance with the SQALE requirements, how the basic
Ada metric and quality measurements tools can be used. Finally a few results
of applying SQALE for Ada are described and analyzed, putting in evidence the
small quality debt incurred in the selected projects.

2 The SQALE Analysis Model

Before describing in detail the implementation of the SQALE model for Ada, the
quality model of the SQALE method will be briefly presented. The quality model
of the SQALE method expresses the requirements applicable to the software
and its source code over its life cycle. In the same manner that the activities
linked to making the software and in particular its source code, follow a clear
chronology the requirements applicable to the source code appear in a same

Fig. 1. Dependencies between Activities and Quality Characteristics

order. The approach and the structure of the SQALE quality model has been
detailed elsewhere [1] and are summarized in figures 1 and 2.

The generic SQALE model is derived according to the implementation tech-
nologies (design and source code languages) and the tailoring needs of the
project. As stated in [1], the quality model is a requirements model. The way it is
built ensures the quality targets a total absence of non compliances. As written
by Ph. Crosby [5], assessing a software source code is therefore similar to mea-
suring the distance which separates it from its quality target. To measure this
distance, the concept of remediation index has been defined and implemented
in the SQALE analysis model. An index is associated to each component of
the software source code (for example, a file, a module or a class). The index
represents the remediation effort which would be necessary to correct the non
compliances detected in the component, versus the model requirements. Since
the remediation index represents a work effort, the consolidation of the indices
is a simple addition of uniform information, which is compliant with the repre-
sentation condition and a critical advantage of our model. A component index
is computed by the addition of the indices of its elements.

A characteristic index is computed by the addition of the base indices of
its sub-characteristics. A sub-characteristic index is computed by the addition
of the indices of its control points. Base indices are computed by rules which
comply with the following principles:

– A base index takes into account the unit remediation effort to correct the
non-compliance. In practice, this effort mostly depends on the type of non-
compliance. For example correcting a presentation defect (bad indentation,

Fig. 2. Some details of Level 2 and 3 of the SQALE Quality Model

dead code) does not have the same unit effort cost as correcting an active
code defect (which implies the creation and execution of new unit tests,
possible new integration and regression tests).

– A base index also considers the number of non-compliances. For example,
a file which has three methods which need to be broken down into smaller
methods because of complexity will have an index three times as high as a
file which has only one complex method, all other things being equal.

Base indices are aggregated either by the artifact where the non-compliance has
been identified, or by the relevant (sub-)characteristic. In the end, the remedia-
tion indices provide a means to measure and compare non compliances of very
different origins and very different types. Coding rule violation non-compliances,
threshold violations for a metric or the presence of an antipattern non-compliance
can be compared using their relative impact on the index.

The standard measure set of SQALE has more than 30 control points and
the extended set more than 60. A few examples of base measures are explained
in more detail, to show how each complies with the conditions explained above:

– A well-known issue contributing to reduced testability is an excessive cyclo-
matic complexity for a given operation (procedure or function) in the code.
The default threshold for excessive complexity in SQALE is 15. Any opera-
tion having a V(G) over 15 will be counted as one violation, and the count
is cumulative per class and file in order to apply the representation con-
dition. This measure is mostly independent of the programming language,
each language has an equivalent.

– A contributor to reliability measurement is the absence of dynamic memory
allocation (for real-time software) or a balanced use of allocation and deal-

location instructions (malloc and freemem in C for example). Each violation
of this rule increments the count by one, again for each class and file.

– A contributor changeability measurement can be obtained by computing the
number of operations (methods) per class (excluding getters and setters) and
checking it is beneath a threshold, fixed in SQALE at 30.

– A contributor to maintainability measurement is obtained by measuring the
comment ratio, for each file. If it is below SQALEs default threshold of 25%,
a violation is counted.

– Finally, for real-time software, the presence of dead code and commented-out
code is also counted as a contributor against maintainability.

Of course, the various examples presented above have different remediation in-
dices. The SQALE method uses the organizations remediation indices built using
historical data from the projects. If it is not possible, a Delphi analysis [6] or AHP
[7] may be used with the project and the SQALE experts to define expert-based
remediation indices.

In the above examples, the thresholds provided are examples in a particular
context, the SQALE method providing conservative defaults if needed. Many
authors (f.e.: [8–12]) have proposed individual check points and thresholds that
can be used in SQALE, provided the representation clause is satisfied [3].

The SQALE quality and analysis models have been used to perform many
assessments of software source code, of various application domains and sizes.
The same layered and generic quality model has been used to assess Cobol, Java,
embedded Ada, C or C++ source code. For Java, C++ and Ada, the quality
model contains object-oriented metrics to assess Testability, Changeability and
Reusability. The quality model also provides control points to detect the absence
of antipatterns such as those identified by Brown [13]. The indices are computed
based on the average remediation efforts estimated by the development team.
The index thresholds providing a rating in five levels (from “poor” to “excellent”)
are established by the application managers.

3 The SQALE for Ada quality model

Making a SQALE Ada quality model requires defining the requirements for the
Ada language. Some requirements can be reused as-is from the SQALE default
quality model, such as the maximum cyclomatic complexity for subprograms, or
the absence of copy/paste (for 100 tokens). Other requirements such as the one
for comments can be applied to Ada, but with a lower bound (and a maximum)
due to the inherently more readable nature of the language.

Other requirements are not applicable as they are enforced by the compiler.
The most notable of those is the requirement for a directed acyclic hierarchical
dependency graph between units of compilation: cyclic dependencies between
packages are prohibited by the language.

Some requirements related to object-oriented concepts are more difficult to
analyze in the dual nature of the Ada language and have to be adapted to the
language. For example, the stability requirement is computed on the efferent and

afferent coupling of packages, not objects. The final list of selected requirements,
for our SQALE Ada Quality Model covers most characteristics and subcharac-
teristics of the SQALE model.

A drawback of the model is the lack of efficiency requirements. SQALE re-
quirements in other languages require the absence of certain statements or li-
brary functions likely to cause inefficiencies. A first analysis has not uncovered
the equivalent in the Ada language. Other efficiency requirements need to be set
up, related to the two sub-characteristics: CPU performance, memory (RAM)
performance. One requirement was identified related to the absence of dead code
in the source, and linked to the memory (ROM) performance subcharacteristic.
The final SQALE Ada Quality Model is presented in table 1. The reusability

Table 1. The SQALE for Ada Default Quality Model

No Characteristic Sub-
Characteristic

Generic Requirement Description Ada Requirement

1 Testability Unit testability Acceptable number of parameters
in a call (NOP)

NOP ≤ 5

2 Testability Unit testability Acceptable number of test paths in
a module (V(G))

V(G) ≤ 15

3 Testability Unit testability Tolerable number of test paths in a
module (v(G))

V(G) ≤ 60

4 Testability Unit testability Acceptable number of different
called modules from a module
(FANOUT)

Efferent coupling ≤ 20

5 Testability Unit testability Acceptable duplication within a
module (CPRR100)

Number of CPRR100 violations

6 Testability Unit testability All code paths within a module are
reachable

All code is reachable

7 Testability Unit testability All modules are reachable All modules are reachable
8 Testability Unit testability No module calling itself recursively No recursion
9 Testability Integration testa-

bility
Acceptable coupling between ob-
jects (CBO)

CBO ≤ 7

10 Testability Integration testa-
bility

No public data within classes No directly accessed globals, all public
(tagged) types are private.

11 Testability Integration testa-
bility

Acceptable number of direct de-
clared required files

With count < 50

16 Reliability Data reliability All types are safely converted No unchecked conversions
17 Reliability Data reliability No use of unitialized variables No use of unitialized variables
19 Reliability Logic reliability One single point of exit per module No multiple exits
25 Reliability Statement relia-

bility
Reproducible floating point compu-
tations

No equality comparison between reals

27 Reliability Statement relia-
bility

No ambiguous statement execution
order

No operator precedence order ambiguity

28 Reliability Synchronization
related reliability

Shared resources are used in pro-
tected scope

No shared variables used in several con-
texts

34 Reliability Architecture reli-
ability

Standardized error and exception
handling

No exception propagates to other lan-
guages

38 Changeability Architecture
changeability

No different elements with the same
name

No local hiding

39 Changeability Architecture
changeability

Acceptable number of class meth-
ods (NOM)

NOM (public) ≤ 60 (for a package)?

42 Changeability Data changeabil-
ity

No explicit constants directly used
in the code (except 0,1...)

No literals in expressions or statements

43 Changeability Data changeabil-
ity

All objects are declared at smallest
scope

No unnecessary use or with clause, no re-
duceable scope

45 Efficiency RAM efficiency No unused variable, parameter or
constant in code

No unused variable, parameter or constant
in code

48 Efficiency ROM efficiency All statements are useful No simplifiable statements
51 Maintainability Readability Acceptable File size LSLOC < 2000
58 Maintainability Readability Capitalization rules are followed for

code elements.
Casing

59 Maintainability Readability Rules for identifying types, vari-
ables and other code elements are
followed.

Check the project’s naming rules are ap-
plied. (To be adjusted to the project)

60 Maintainability Understandability Acceptable minimum level of com-
ments

Comments density ≥10% (needs to take
into account verbose FOSS headers)

61 Maintainability Understandability Acceptable maximum level of com-
ments

Comments density ≤35% (needs to take
into account verbose FOSS headers)

64 Maintainability Understandability No unstructured statements (goto,
break outside a switch...) (eV(G))

eV(G) ≤1

66 Reusability Stability The SDP (Stability Dependency
Principle) is applied

The less stable package is not used by the

more stable package3

requirement is based on the stability principle, where the dependency graph and
the stability are computed to determine the actual reusability. If a less stable
package is reused by a more stable one, then it is a violation of the model (for
both packages). The stability is computed as the ratio of using packages over
the total of the using and used packages. If a package does not use any other
packages, it has a stability of one.

Unlike tool-based quality models, the SQALE Ada Quality model is based on
defining the objectives and requirements first, then finding or building the tools
needed to implement it, creating the tools check points from the requirements.

In addition to the quality model, an analysis model was defined for the Ada
language. Each requirement was assigned a remediation factor, based on the
estimated work units required to correct the defect.

The remediation factors are defined by the following table, and mapped to
the quality model. In addition, in order to compute index densities, the size of

Table 2. The SQALE Ada remediation factors

Non-Compliance
Type Name

Description Remediation
Factor

Sample

Type0 Undefined 0 Not applicable
Type1 Fixable by automated tool,

no risk
0.01 Change in capitalization

Type2 Manual remediation, but no
impact on compilation

0.1 Add comments

Type3 Local impact, need only unit
testing

1 Replace an instruction
by another

Type4 Medium impact, need inte-
gration testing

5 Split a big function in
two

Type5 Large impact, need a com-
plete validation

20 Architectural change

the packages (in source lines of code) was used as a rough estimate of the number
of work units to produce the package from scratch, if it were entirely rewritten.
For example, a typical package with 15 lines of specification and 250 lines of body

Table 3. The effort scale per source line for each type of package

Package Type Work Unit per Line

Package Specification (.ads) 1
Package Body (.adb) 0.1

rates 15 + 25 or 40 work units in this model. The justification for this choice is

based on the authors experience of using Ada as a specification language where
the structure of the packages is as important as the implementation.

This number can then be compared with the indices obtained, either in total
or for a given characteristic, and the file rated using the rating scale described in
table 4. For example, a package with 25 work units and a remediation index of
30 would be rated as “E”, very bad (rating of 1.2 in the interval]1,+∞[) . The
same with a remediation index of 7 would be rated as a “C”, medium (rating
of 0.28 in the interval]0.1, 0.3]). Of course, where available in organizations, a
better estimation model may be used to assign more precise remediation and
work effort factors in the analysis model.

Once the quality and the analysis models are defined, the tools implementing
these models may be selected and implemented where missing.

Table 4. The SQALE Ada rating thresholds

Class Name Class Letter Rating Interval Color

Excellent A [0, 0.03] green
Good B]0.03, 0.1] light green
Medium C]0.1, 0.3] yellow
Bad D]0.3, 1] orange
Very Bad E]1, +∞[red

4 Implementing SQALE for Ada quality model

The first step of the method consists in building the non-compliance table from
the source code. The choice of an appropriate set of tools for this is fundamental
to the method, since the significance of the results depends strongly on the accu-
racy and reliability of the measurement tool. For example, simple text processing
tools like Unix’s ”grep”, are too sensitive to presentation issues to be used [15].

The generic SQALE quality model [4] identifies more than 66 points of mea-
surements, and no single tool is able to measure all of the derived checkpoints.
Developing a custom tool for SQALE is not feasible, given the limited time and
budget allotted to the Ada implementation. However, using a limited number
of tools and some ”glue” processing, we were able to implement the method for
Ada. These checkpoints are close to programming rules: they are places in the
source code where undesirable features are used (goto, multiple loop exits), or
where a certain limit is exceeded (number of parameters, cyclomatic complexity).

The requirements are designed independently of any programming language.
An interesting property of Ada is that, among the 66 requirements, 17, which
correspond to features that are best avoided, are actually forbidden by the lan-
guage definition (and thus automatically enforced).

Our main checking tool is Adalog’s AdaControl [14]. The choice of AdaCon-
trol was motivated by several reasons:

– Since it is an ASIS [21] tool, its analysis on the language is based on the
same technology as the compiler, thus increasing the confidence that the
tool processes the language correctly.

– It has a rich set of rules. Out of the remaining 49 requirements, 22 had
checkpoints that were provided right out of the box.

– It can output its results in CSV format, making them directly loadable in a
spreadsheet program for further analysis.

– Moreover, since AdaControl is free software and easily extendable [15–17],
more checkpoints can be added at will.

AdaControl is oriented towards finding occurrences of various constructs, more
than actually measuring mathematical or statistical properties of the source.
For rules that were of this second kind (number of paths, cyclomatic complexity,
fan-out), we used AdaCore’s Gnatmetric tool. Gnatmetric is also ASIS based
and free software.

PMD-CPD[18] is also used to compute the copy/paste non compliances. In
addition, a little post-processing was used to compute some of the complex
checkpoints, glue the results together and build the indices. Table 5 summarizes
the tool set used.

Table 5. The SQALE Ada tool set

Tool Usage

AdaControl Most check-points
Gnatmetric Volumetry, comments
PMD-CPD Copy/Paste detection

Specific tooling Stability, dependencies, Index assembly

5 Some results of SQALE for Ada

Two open-source projects are used to present SQALE for Ada: AdaControl[14]
and Ada Web Server (AWS)[19, 20]. The data presented here are for illustration
purposes and does not constitute an endorsement or rejection of either project.

5.1 SQALE for Ada applied to AdaControl

Naturally we used AdaControl as an example of applying SQALE to an Ada
project. AdaControl is free software: the source code is readily available, and our
results can be published, unlike most industrial applications of SQALE which
are performed on confidential software.

In this analysis, we analyzed the AdaControl as a whole, and computed
the indices for the three parts: AdaControl itself, the ASIS framework, and the
GNAT packages used. Showing the indices for the 3 different parts allows us to

show how each part has unique properties. Each SQALE analysis first provides
size measurements as in figure 3:

Fig. 3. Volume indicators for the AdaControl software

The total line code is around 230 KLoc, evenly distributed between the three
parts of the application. This is a rather low range of the application size for
SQALE, which can target the 0.1 40 million lines of code range. It is an ideal
example, however to demonstrate the usefulness of SQALE.

Once the indices and the densities have been computed, it is possible to
use the aggregated indices and compare the index densities, as in figure 4. The
total quality index for the AdaControl application is 2930 work units, where the
GNAT library takes 1474, the ASIS library 1109 and the AdaControl specific
part 347. The absolute numbers are difficult to compare, so the index densities
are computed over the sum of the lines of code, resulting in a quality index
density of 40, 20 and 10 for each KLoc of code for the GNAT library, the ASIS
library and the AdaControl specific part, respectively. For an industrial analysis,
where the parts could be delivered by different teams, this figure could be used
to benchmark the quality results of each team, against expected quality targets.

There is another way to look at the results, especially from a project managers
point of view, which has a limited budget for the improvement of the quality of
the software. Which defects should be corrected first? Figures 5 and 6 present a
vivid picture demonstrating where the major benefits could be obtained.

The GNAT library actually has a limited testability issue and the ASIS
framework has a higher index, as well as a higher index density. Improving the
ASIS framework would increase the overall quality of this application and is a
major result of the SQALE analysis.

Fig. 4. The indices and index densities for the three parts of AdaControl

Fig. 5. The testability indices and index densities

Fig. 6. The reliability indices and index densities

The reliability indices computed by the SQALE method are mostly linked to
the GNAT library, and within the indices, related to the use of global unprotected
data. If some quality budget remains, it might be useful for the maintainers to
review and protect the global variables published by the GNAT library. Fully half
of the indices have been analyzed by just reviewing the first two characteristics
of the SQALE model. A careful project manager may not need to look further

Fig. 7. The SQALE pyramid for AdaControl

for quality increases until these issues have been solved. The SQALE pyramid

provides the same indication in a clear picture: 1731 work units out 2930 are
assigned to the testability and reliability characteristics. The actual amount of
files to be modified is extremely low, mostly below 10%. In addition, since the
copy/paste requirement is in the testability characteristic, the low values we see
here indicate a low copy/paste problem, which is often not the case in industrial
SQALE analyses.

5.2 SQALE for Ada applied to Ada Web Server

Ada Web Server (AWS) is a framework to provide complete web based applica-
tions. It can be embedded in an Ada application to provide web services. See [19]
for more information. AWS itself reuses other libraries available within the Ada
community, such as XMLAda, a SSL library. It contains a well-defined “tem-
plates parser” module to separate web design from the code. For our analysis,
we decided to rate each part separately.

The overall size of the framework and its parts is shown in figure 8 below.
With 132 KLOC, this framework is smaller than the AdaControl application.
The 7000 cyclomatic complexity sum is consistent with the size. The “tem-
plates parser” module is a small component of AWS, while XMLAda is roughly
equivalent to the rest of the code base. Figure 9 below shows the SQALE pyra-

Fig. 8. application of SQALE to another Ada framework: Ada Web Server (AWS)

mid for AWS. Testability and reliability indices are quite correct, whereas some
work might still be useful on the maintainability and reusability characteris-
tics. The final quotation shows little need for improving the AWS packages for
testability, while maintainability might be an issue for some of the packages.

Fig. 9. The SQALE pyramid for AWS

Most of the remediation in the maintainability characteristic is related to the re-
quirement “eV(G) ≤ 1” and needs more investigation. Again, as for AdaControl
and contrary to common industrial practice, there is little need for copy/paste
refactoring.

6 Future work

The validity of the SQALE model is based on its focusing on the quality require-
ments first, then drilling down into the sub-characteristics and how the require-
ments are implemented by the tools as check points. As described above, the
efficiency characteristic is lacking requirements for Ada. Additional research can
therefore identify requirements, or if that proves too difficult, identify why in the
Ada language such an endeavor is difficult. Additional reusability requirements
would also be very useful. Once SQALE starts to be used, the Ada community
will be able to review the various SQALE requirements and fine-tune them for
its specific needs.

Building a SQALE quality model for Ada has proved surprisingly easy, es-
pecially compared to other languages. SQALE has always been intended as a
method for checking software quality, not only source code quality. SQALE for
Ada might be the right quality model to extend SQALE and start using require-
ments for other software artifacts such as requirements or design models, test
cases and test results (using coverage and dynamic analysis tools). Particularly,
being able to measure design at an early stage may result in SQALE being used
as early predictor of final quality.

7 Conclusion

This paper proposes a quality model and an analysis model for measuring the
quality of applications using the Ada language, based on the SQALE method. It
also describes a set of tools for implementing the checkpoints and computing the
resulting indices, index densities and ratings according to the SQALE method.
These indices are computed to estimate the remaining technical debt, or work
effort remaining in the application from quality non-compliances.

Two examples of the application of the SQALE method are described, to
the AdaControl tool itself, and to the Ada Web Server framework. Both demon-
strate the value of measuring the software, pinpointing testability, reliability and
maintainability issues that, once corrected, will raise the quality of the software
by more than half.

Finally, since the indices of the SQALE method are independent of the tar-
get language, once computed, the results provided demonstrate the low quality
debt remaining in an Ada application, quality debt which can be comparably
estimated in other applications in other languages. SQALE for Ada can be one
of the benchmark tools to help promote the use of Ada.

References

1. J-L Letouzey, Th. Coq, The SQALE Models for assessing the quality of software
source code, DNV Paris, white paper, September 2009

2. J.-L. Letouzey, Th. Coq, The SQALE Models for Assessing the Quality of Real
Time Source Code, ERTSS 2010, Toulouse, September 2010

3. J.-L. Letouzey, Th. Coq, The SQALE Analysis Model - An Analysis Model Compli-
ant with the Representation Condition for Assessing the Quality of Software Source
Code, VALID 2010, Nice, August 2010

4. http://www.sqale.org.
5. P.B. Crosby, Quality is free: the art of making quality certain, ISBN 0-07-014512-1,

McGraw-Hill, New-York, 1979
6. Harold A. Linstone, Murray Turoff, The Delphi Method: Techniques and Applica-

tions, Adison-Wesley, Reading, Mass, 1975.
7. Thomas L. Saaty, Fundamentals of Decision Making and Priority Theory, RWS

Publications, Pittsburgh, 2001
8. J. A. McCall, P. K. Richards and G.F. Walters, Factors in Software Quality, The

National Technical Information Service, No. Vol 1, 2 and 3, 1977
9. B. W. Boehm, J. R Brown, H. Kaspar,., M. Lipow,., G. McLeod,., and M. Merrit,

Characteristics of Software Quality, North Holland, 1978
10. Th. McCabe, A. H. Watson, Structured Testing: A Testing Methodology using the

Cyclomatic Complexity Metric, National Institute of Standards and Technology,
Special Publication 500-235, 1996

11. S. R. Chidamber, C.F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE
Transactions on Software Engineering, Vol 20, N 6, PP 476-493, June 1994

12. N.E. Fenton, S. L. Pfleeger, Software Metrics: A rigourous Practical Approach,
second edition, ISBN 053495425-1,PWS Publishing Company, Boston, 1997

13. Brown et al, Anti patterns : refactoring software, architectures and projects in
crisis, ISBN 978-0-471-19713, John Wiley, 1998

14. http://www.adalog.fr/adacontrol2.htm
15. J-P. Rosen, ”AdaControl: a free ASIS based tool”, presentation at FOSDEM, Brus-

sels, Belgium, February 2006.
16. J-P. Rosen, ”On the benefits for industrials of sponsoring free software develop-

ment”, Ada User Journal, Volume 26, n 4, december 2005.
17. M. Jemli and J-P. Rosen, ”A Methodology for Avoiding Known Compiler Prob-

lems Using Static Analysis”, proceedings of the ACM SIGAda Annual International
Conference (SIGAda 2010), ACM Press, ACM order number 825100, Fairfax, USA,
October 24-28, 2010.

18. PMD-CPD site: http://pmd.sourceforge.net/cpd.html
19. Ada Web Server site: http://libre.adacore.com/aws/
20. J-P. Rosen, ”Developing a Web server in Ada with AWS”, Ada User Journal,

Volume 25, n3, September 2004.
21. ISO/IEC 15291:1999. Information technology Programming languages Ada Se-

mantic Interface Specification (ASIS)

