
 1

Using Ada's Visibility Rules and Static Analysis to

Enforce Segregation of Safety Critical Components

J-P. Rosen

Adalog, 2 rue du Docteur Lombard, 92441 Issy les Moulineaux CEDEX, France;
email: rosen@adalog.fr

J-C. Van-Den-Hende

ALSTOM Transport, 48, rue Albert Dhalenne,93482 SAINT-OUEN CEDEX, France;
email: jean-christophe.van-den-hende@transport.alstom.com

Abstract

Segregation of components is required in mixed
criticality systems, where different safety integrity
levels apply to various components. This paper
presents a solution where appropriate organization of
the project into child units and proper usage of Ada's
visibility rules complemented with simple static
analysis are sufficient to ensure that all violations of
segregation rules will be rejected at compile time.

This paper provides some explanations about the Ada
mechanisms used to that effect, in order to make it
understandable by those who are not familiar with the
Ada language.

The need for segregation

ALSTOM Transport is a leading provider of ground and

embedded railway systems. In order to minimize costs as

well as to maximize safety, it is developing a new,

components based, architecture in Ada that would

maximize the possibility of reusing components between

various systems.

Railway safety is highly dependent on software; although it

is true that a train can stop in an emergency situation

(unlike planes), stopping a high speed train (such as the

French TGV) with emergency breaking requires three

minutes and 3300 meter distance. This is far too much to

avoid an accident that would be caused by a software

failure, and no manual action of the driver can compensate

for a software fault. Therefore, railway systems are subject

to very strict rules ensuring correctness of the software.

Railway software is governed by the safety standard EN-

50128 [1], which defines five Safety Integrity Levels (SIL),

ranging from SIL0 (lowest criticality) to SIL4 (highest

criticality). This is similar to the "levels" E to A of

DO178C [2] for avionics systems. As can be expected, the

cost of developing, checking, and certifying SIL4 software

is much higher than the one of lower SILs. The necessity of

reducing development costs implies that only truly critical

parts be subject to the highest criticality checks.

Mixed criticality systems

In a complex system such as those that ensure safety and

correct operation of trains, only a relatively small subset of

the functions (and hence associated components) is of a

SIL4 level. However, the lower criticality components

(considered SIL0 for short) run on the same computer and

are part of the same main program as the SIL4 components.

Such systems where components with different safety

requirements are running together are called mixed

criticality systems, whether the components are several

applications running on the same computer, or a single

application that mixes various software components.

Of course, the difficulty with mixed criticality systems is

that a defect in a SIL0 component could adversely affect

the behaviour of a SIL4 component. The traditional

approach to addressing this issue is to submit all

components to the same safety process as required by the

highest criticality component in the system - in practice the

SIL4 process. While this has the benefit of ensuring the

highest confidence in the system as a whole, it has an

enormous cost, since the vast majority of components must

suffer a costly validation and certification process that goes

far beyond what is required for their own criticality.

Segregation

This cost can be dramatically reduced through segregation,

i.e. if it can be proven that SIL0 components are

independent from SIL4 ones, and that the behaviour of no

SIL4 component depends on a SIL0 component. Such a

segregation can be achieved through hardware or software

control.

For example, in avionics systems (which have similar

issues), the ARINC-653 [3] standard has been designed to

ensure hardware segregation of components of different

levels: the standard ensures that components of different

criticalities have different address spaces, and a MMU

ensures that each component can access only its own

address space. Communications between components are

performed through a dedicated bus, etc. Note however that

hardware segregation prevents corruption by an incorrect

low criticality component at execution time, but does not

ensure that the software is free from such errors.

On the other hand, software proofs and other static

verification techniques can be used to demonstrate that by

design, no low criticality component performs dangerous or

incorrect actions that could jeopardize the safety of high

criticality components. Of course, to be effective and

2 Us ing Ada 's V is ib i l i t y Ru les and S ta t ic Ana l ys is to Enforce Segregat i on o f Safe t y Cr i t i ca l Components

economical, such proof systems have to be much cheaper

than the usual SIL4 validation process.

The study and its requirements

ALSTOM wanted to evaluate various solutions to ensure

segregation of components, and asked Novasys [4] (part of

the Pacte-Novation group) to conduct two studies on

solutions using hardware and software segregation

respectively. The hardware solution was studied directly by

Novasys, while the software solution, which is the purpose

of this paper, was conducted by Adalog [5], a subsidiary of

Novasys specialized in Ada consultancy, expertise, and

training.

Requirements

A SIL4 component is one which is responsible for actions

that can compromise safety, like setting the speed of the

train, controlling the opening of the doors, etc. Such

components must not only be checked for their own

correctness; it is also important to check that they do not

use unsafe operations, that their provided operations are not

called in an incorrect manner and that they do not operate

on incorrect data.

Therefore, the following rules were established as a basis

for the software segregation study:

 Data passed from SIL0 to SIL4 components are deemed

unreliable; it is up to the SIL4 component to assess the

validity of the data.

 Except for the dedicated zones for data exchange, no

SIL0 component is allowed to access SIL4 data.

 Some utility components that do not perform any safety

critical function can be called by SIL0 as well as SIL4

components; however, since they are used by SIL4

components, they are classified as SIL4.

 If a SIL0 component needs to be called by a SIL4

component, this can be done only through a dedicated

SIL4 component that will perform all required

checking.

 Except for the special cases above, no SIL4 component

or functionality can be used by a SIL0 component.

In addition, low level features of Ada, unchecked

programming, and removal of language checks are not

allowed in SIL0 components, in order to guarantee memory

integrity of the system (see below).

A software architecture for statically
checking segregation rules

The software study goal was to find a convincing (and

economical) way of enforcing the above rules. The study

proposed an architecture of the software that would allow

checking of the segregation rules by the compiler. In other

words, a program that would not obey by the rules would

simply not compile. This was made possible by using Ada's

visibility rules related to packages and child packages.

Ada packages and visibility rules

In Ada a package is a logical module that gathers a set of

logically related elements (types, constants,

subprograms…). Like all Ada units, a package has a

specification and a body. The specification exposes the

elements that are usable outside of the package, while the

body contains the implementation of the services

announced in the specification. The specification is

furthermore divided into a visible part and a private part;

actually, only elements from the visible part are made

available to the outside units. This part can contain private

types that are announced without revealing their internal

structure. The private part of the package serves to give the

compiler the full declaration of these types, without making

it visible to the users. This allows the definition of abstract

data types, where only the type name and its operations are

made visible, all implementation details being hidden in the

private part and in the body. Of course, the body of a

package sees the private part, including the full declaration

of abstract data types.

The typical structure of a package is shown in the following

example:

package Example is -- specification

 type T is private; -- a private type

 procedure P (X : T); -- operation

private -- beginning of private part

 type T is -- full declaration of T

 record

 Compo: Compo_Type; -- Components…

 end record;

end Example;

package body Example is -- body

 procedure P (X : T) is -- body of P

 …

 end P;

end Example;

Figure 1 Structure of a package

Packages can be organized as a hierarchy of parent/child

units. A child package is simply a package whose name is

prefixed by the name of its parent. A child package can be

either public or private.

 A public child can be accessed normally by the rest of

the system; however its visible part has only access to

the visible part of its parent
1
. For implementation

purposes, its own private part and its body see the

private part of the parent.

 A private child is available only to the bodies of its

parent and siblings (and descendants). A parent,

together with its private children, defines a subsystem,

where only the parent interface is available outside the

subsystem.

1
 Consequently, a public child cannot reveal declarations

hidden in the private part of its parent.

J.-P. Rosen and J-C. Van-Den-Hende 3

The following example illustrates the declaration

(specification) of public and private child packages:

-- public child package

package Parent.Pack1 is

 …

end Parent.Pack1;

-- private child package

private package Parent.Pack2 is

 …

end Parent.Pack2;

Figure 2 Child packages

The architecture

As exposed above, Ada features a sophisticated system for

controlling visibilities, and therefore the allowed calls

between separately compiled modules. The idea of the

study was to use these features to provide compile-time

enforcement of the segregation rules.

The proposed structure followed the overall general

framework exemplified by the following figure:

In this example, "Safe_Components" and

"Unsafe_Components" are empty packages that serve as

roots to the SIL4 and SIL0 hierarchies, respectively.

"Shared_Services" and "Components_Manager", which are

callable from SIL0 components, are public children of

"Safe_Components" (thus visible and callable by all

components), while SIL4 components are private children

(therefore visible and callable only from within the SIL4

hierarchy): with this structure, it is impossible for SIL0

components to call SIL4 components, except for the

dedicated and easily identifiable shared components.

Similarly, SIL0 components are private children of

"Unsafe_Components", thus preventing them from being

called by SIL4 components. On the other hand, the

dedicated area for exchange of data ("X-Memory"), which

is classified as SIL0 but usable from SIL4 components, is

declared as a public child of "Unsafe_Components".

In the few cases where a SIL0 component would need to

call a functionality from a SIL4 component, it would do so

through an exported service of "Shared_Services", that

would either perform the required validation of data, or, if

there is no safety issue, simply be a renaming of the

underlying (hidden) SIL4 service that remains private.

As far as data are concerned, except for the exchange area

("X-Memory"), no SIL0 variable should be accessible from

SIL4 components, and conversely. This is easily obtained

by forbidding the declaration of any variable in the visible

part of packages (which is, in addition, a generally accepted

coding rule, independently of any segregation issue).

Possible data shared between components of the same level

are placed in private children of "Safe_Components" and

"Unsafe_Components".

Tracing the integrity level of components

In a mixed criticality system, it is important to trace the

integrity level of each element, in order to perform checks

appropriate to each level. This requires generally extra

documentation, check lists, special comments, etc.

Another benefit of this structure is that the classification

(SIL4 or SIL0) of components shows directly from the

structure of the software; there is no need of maintaining

manually a list of components with their assigned safety

level. The level of the component appears directly from its

Ada name; for example, the full name of the "Safe_1"

component, the one given in its declaration, would be

"Safe_Components.Safe_1", thus immediately showing that

it is a SIL4 component. The list of SIL0 components is

simply obtained by filtering all components whose name

start with "Unsafe_Components.".
2

Conversely, the simple fact that a component's name starts

with "Safe_Components." or "Unsafe_Components." will

automatically enforce the corresponding segregation rules.

2
 A common convention is to name a file containing a unit

with the name of the unit (with some substitutions, like

replacing "." with "-"). Some popular compilers enforce

this convention. In such a case, obtaining the list of files

containing SIL0 units is as simple as using the Unix

command "ls unsafe_components-*".

Components_Manager

Safe_Components

(SIL4)

Safe_1 Safe_2

Unsafe_Components

(SIL0)

Unsafe_1 Unsafe_2

Shared_Services X-Memory

Public

child

Private

child

Figure 3 Architecture of the application

4 Us ing Ada 's V is ib i l i t y Ru les and S ta t ic Ana l ys is to Enforce Segregat i on o f Safe t y Cr i t i ca l Components

Alternative possible architectures

The above described architecture was optimized according

to the requirements of Alstom. But many variations on this

basic principle of architecture are possible, depending on

the constraints of the project. For example, shared

component could constitute a hierarchy of their own rather

than being under the "Safe_Components" tree
3
.

In summary, the basic principles used for achieving

segregation, and that Ada rules can enforce, are:

 Every segregated subsystem constitutes a single tree,

with an empty root and where every module (except for

communication modules) are private child units.

 Communication between modules of different criticality

is achieved through public child units. Every

communication module needs to be certified at the

highest integrity level among its own level and the level

of all possible callers.

Other necessary checks

Because it is sometimes necessary to escape from common

programming rules, often in connection with low level

programming such as direct management of hardware, Ada

provides so-called unsafe programming features. These

features include special packages to overcome normal type

checking and provide direct access to memory, and

pragmas for the removal of mandatory compiler checks

(such as array overflow control). Malicious use of these

features could be used to defeat the controls provided by

the above structure, therefore their use is not allowed in

SIL0 components
4
.

In a safety critical system, it is not sufficient to have a

programming standard that forbids such features; it must be

proven that they are effectively not used. In Ada, any

compilation unit that requires the use of a package must

name it in a special clause (a with clause), therefore

ensuring that any dependency between units is explicitly

stated – and this applies to predefined packages as well.

Removal of language checks requires the use of special

pragmas. Therefore, it is sufficient to make sure that there

is no with clause naming one of the unsafe programming

packages and no use of the special pragmas to ensure that

the safety features of the language are effective.

Checking these rules is easily achieved with static analysis

tools. One of these tools is Adalog's AdaControl tool

[6][7][8], a free static rule checking tool whose rich set of

rules covers all the necessary restrictions.

Finally, some constructs that are normally allowed by the

language were forbidden by the constraints of the project,

such as the declaration of variables in the visible part of

3
 This possibility was not retained because Alstom wanted

to have all units requiring SIL4 verification under the same

root.
4
 they are allowed in SIL4 components, since those are

subject to extensive reviews to make sure that the features

are used only appropriately.

packages. This can be checked by manual inspection;

however AdaControl is also able to check these

automatically, which is always preferable to human (and

therefore fallible) inspection.

In addition, the study analyzed (existing) ALSTOM's

coding standard to determine which SIL4 rules were

applicable to SIL0 components in order to allow

cohabitation, and all applicable rules were also found

checkable with AdaControl.

Conclusion

In conclusion, the appropriate use of visibility rules related

to public and private children allowed the definition of a

structure where segregation rules are enforced by the

compiler.

The remaining safety constraints were checked

automatically by a static analysis tool (AdaControl), thus

allowing cohabitation of SIL4 and SIL0 components

without loss of safety, and with a considerable economic

gain compared to solutions that involve hardware

segregation, or full certification at SIL4 level of SIL0

components.

As an additional benefit, the structure allows easy tracing

of the integrity level of each component.

References

[1] CENELEC (2011), EN50128:2011 Railway

Applications -Communications, signaling and

processing systems.

[2] DO-178B: Software Considerations in Airborne

Systems and Equipment Certification, 1992.

[3] ARINC 653 - Avionics Application Software

Standartd Interface, November 2010.

[4] http://www.novasys-ingenierie.com/

[5] http://www.adalog.fr/en/

[6] J-P. Rosen: On the benefits for industrials of

sponsoring free software development, Ada User

Journal, Volume 26, n° 4, december 2005.

[7] J-P. Rosen: AdaControl: a free ASIS based tool,

presentation at FOSDEM, Brussels, Belgium, February

2006.

[8] M. Jemli and J-P. Rosen: A Methodology for Avoiding

Known Compiler Problems Using Static Analysis,

proceedings of the ACM SIGAda Annual International

Conference (SIGAda 2010), ACM Press, ACM order

number 825100, Fairfax, USA, October 24-28, 2010.

http://www.novasys-ingenierie.com/
http://www.adalog.fr/en/

