
72

Volume 43, Number 1, March 2022 Ada User Journal

The Ada Numerics Model
Jean-Pierre Rosen
Adalog, 2 rue du Docteur Lombard, 92130 Issy-Les-Moulineaux, France.; email: rosen@adalog.fr

Abstract

This paper describes the challenges of making portable
calculations across different architectures, and how
the Ada model addresses the issues.

Keywords: Ada, numerics, floating points, fixed points.

1 What is numerical analysis?

All programming languages feature so-called “real” types.
However, these types are very different from mathematical
reals. The mathematical set cannot be represented on a
computer: it has an infinite number of values, even for a
bounded segment. A computer can represent only types with
a finite number of values, and these values can be (at most)
rational numbers, since there is no finite representation of
irrational numbers.

However, computers are intended to perform computations
for the real world, and if you want to compute the
circumference of a circle given its radius, you will need ,
which is irrational!

Therefore, we can define numerical analysis as the art of
making not too wrong computations in the real world, using
only the finite subset of rational numbers that a computer can
handle.

Moreover, since the result is not exact, it is important to be
able to compute how wrong (or more precisely uncertain) the
result is.

2 Hardware formats and languages

There are many ways of representing real numbers on a
computer For example, [1] describes 76 different floating
point formats! Moreover, there are often several available
formats on a given computer, allowing various trade-offs
between range, accuracy, and memory space. For example,
the popular IEEE-754 standard [2,3] features 5 standard
formats, (3 binary, 2 decimal), + extensions. The old
DEC/Vax architecture is another interesting case, as pictured
in figure 1:

Size Exponent Mantissa

32 bits 8 23

64 bits 8 55

 11 52

128 bits 15 112

Figure 1 VAX floating point formats

Note that there are two different 64 bits format, one with
more accuracy (longer mantissa) and the other one with
more range (longer exponent). Talking about “short” or
“long” floats cannot describe this situation.

Actually, the notion of short or long floats dates back to the
early times of Fortran, when most computers had only two
floating point formats. Most today’s languages still define
various floating point types just by the size of the type,
without any idea of the actual accuracy (or range) implied by
the type, and no definition of the accuracy of computations.

The IEEE-754 standard tried to address these issues by
defining a number of standard formats and the associated
accuracy, including a precise definition of arithmetic: two
computers implementing the standard will give exactly the
same results. However, the relation to programming
languages is delegated to the programming language
standard, including the means to adjust a certain number of
features (like exceptions). And from a programmer’s point
of view, the issue of portability for computers that do not
implement the standard remains.

3 Ada model and real types

3.2 Model of arithmetic
The Steelman requirements [4] called for both
“approximate” and “exact” computations whose accuracy
could be chosen by the user, independently of the underlying
architecture.

The solution offered by Ada is inspired by the notion of
approximate values in physics: a value does not stand only
for itself, but represents a small range of values
corresponding to an uncertainty around the value. Based on
this, a range arithmetic can be defined, the so-called Brown’s
model [5].

Physicists use two kind of approximations: absolute
approximations, where the uncertainty is the same for the
whole range of values (i.e. value is 5V±0.1V), and relative
approximations where the uncertainty is proportional to the
value (i.e. value is 5V±1%). Similarly, Ada offers two kind
of real types: fixed point types corresponding to absolute
approximation, and floating point types corresponding to
relative approximation.

The syntax of the definition of a fixed point type is as
follows:

-- Binary fixed
type name is delta step range min .. max;
type Volts is delta 0.01 range 0.0 .. 100.0;

J.P. Rosen 73

Ada User Journal Volume 43, Number 1, March 2022

-- Decimal fixed
type name is delta step digits number_of_digits
 [range min .. max];
type Euros is delta 0.01 digits 11;

The syntax of the definition of a floating point type is as
follows:

type name is digits number_of_digits [range min..max];
type Length is digits 5 range 0.0..40.0E6;

Unlike most other languages, the programmer does not
choose one of the types provided by the computer, but
expresses the requirements on the mathematical properties
of the type. It is up to the compiler to choose an appropriate
machine type that fulfils the requirements.

The definition of an Ada real2 type defines a set of values,
called model numbers that must be represented exactly on
every implementation. If no machine type is available that
satisfies the declaration (i.e. that can represent exactly all
model numbers), the declaration is rejected by the compiler.
The machine type chosen by the compiler may include more
values than the model numbers: these extra values are called
machine numbers and provide more accuracy than the
minimum guaranteed by the declaration.

Since the programmer specifies the requirements for
accuracy and range, the compiler can choose the most
appropriate among all available machine types.

This defines the accuracy of the definition of data. In
addition, if the compiler implements the numerics annex,
there are additional requirements on the accuracy of
operations, including for the functions provided by the
numerical libraries: elementary functions, linear algebra, and
random number generators.

The principle of these requirements, following Brown’s
model, is as follows:

 If both operands are model numbers and the
mathematical result of the operation is a model number,
then the computed result must be that model number,
exactly.

 Otherwise, if the mathematical result lies between two
model numbers, the computed result can be any value
belonging to the model interval bounded by the nearest
model numbers that surround the mathematical result.
This means that the compiler can keep more accuracy if
hardware permits, but that the inaccuracy is bounded
independently of the hardware.

 The above principle is extended when both operands are
only known to belong to some intervals: the
mathematical operation is (formally) performed between
all values of operands in their respective model intervals,
thus defining a result interval that can extend over
several model intervals, and is not necessarily bound by

2 Remember that the term "real" in Ada encompasses both floating point
and fixed point types.

model numbers; the computed result must belong to this
result interval, extended to the nearest model numbers.

This is basically like computing approximations in physics,
except for the extra “digitalization noise” due to extending
the intervals to the nearest model numbers.

Note that with this model, there is no notion of underflow.
Some arithmetic models make a special case when a
mathematical result is not strictly zero, but the computed
result is an exact zero. In Ada, this situation means that zero
belongs to the result interval and is an acceptable result; it is
not a special condition.

As far as portability of computations is concerned, a program
running on two different computers will not give the exact
same result; however, both results will belong to an interval
whose range can be computed independently of the
implementation. What Ada guarantees is not an absolute
result (which is meaningless anyway, since there is always
some uncertainty), but portable bounds on the maximum
error of computations.

In addition, the standard requires that all static expressions
be evaluated exactly; no error can be introduced at compile
time by differences of evaluations within the compiler.

3.3 Fixed point vs. floating point types
All languages provide floating point types, and programmers
are used to them. But few languages provide fixed point
types, and people who are not familiar with them often do
not consider their use. They constitute however an additional
possibility of Ada that can often better match the problem
domain than floating point types. Figure 2 shows a
comparison of the respective model numbers of a fixed point
type and of a floating point type:

Figure 2 Floating points vs. fixed points model numbers

Fixed point model numbers are evenly spaced, while floating
point model numbers are very tight when close to zero, but
lose (absolute) accuracy when away from zero. Fixed point
types are often more appropriate to represent money or
physical values, like readings from measurements devices.
This is especially the case for time, where the zero value is
arbitrary3, and there is no reason to provide more accuracy
when getting closer to zero4.

3.2 Numerical portabilities
Portability of numerical computations is not a single goal.
There are actually several kinds of numerical portabilities,
as allowed by the Ada model.

3 In Ada, the type duration is a fixed point type.

4 Except for astronomers who model the big bang, of course…

74 The Ada Numerics Model

Volume 43, Number 1, March 2022 Ada User Journal

For example, you may want to benefit from the “natural”
types of your computer, and be able to determine the
confidence range of your result. You will use predefined
types, like Float or Long_Float. Knowing your algorithm and
given the various attributes provided by Ada, a numerical
analyst is able to determine the accuracy of the result. This
can be called a posteriori portability: the same program run
on machine A will print “PI=3.14+-0.05”, while on machine
B it will print “PI=3.1415+-0.0005”. Both results are correct,
although not identical.

In other cases, you may have requirements on the accuracy
of the result; for example, the maximum error on the
computed speed of a vehicle must not exceed 5 km/h. Like
any requirements, it should be provably met! Given the Ada
model, your numerical analyst is able to determine the
required accuracy (and range) of the data that are part of the
computation. These can be expressed in Ada terms, and
guaranteed by the implementation, independently of any
architecture. This can be called a priori portability: different
machines may give different results, but they will all be
within the stated requirements.

Conclusion

For many programming languages, as soon as a numeric
value includes a decimal point, the only choice is between
short and long floats, which usually boils down to short
floats if memory space is an issue, or long floats “just to be
on the safe side” otherwise. Not exactly an engineered
approach…

Ada offers a rich range of real types that can provably match
stated requirements and guarantee the maximum uncertainty
of the computed results, independently of the underlying
architecture. When it comes to choosing a programming
language for a development, this aspect of Ada should really
be more known to all those with requirements on the
accuracy of computations.

References

[1] http://www.quadibloc.com/comp/cp0201.htm

[2] Wikipedia, IEEE 754,
https://en.wikipedia.org/wiki/IEEE_754

[3] "IEEE Standard for Binary Floating-Point Arithmetic".
ANSI/IEEE Std 754-1985.

[4] Department of Defense, Requirements for High Order
Computer Programming Languages "STEELMAN",
June 1978.
https://en.wikisource.org/wiki/Steelman_language_requireme
nts

[5] W. S. Brown, A Simple but Realistic Model of Floating-
Point Computation, ACM Transactions on
Mathematical Software, Volume 7 Issue 4, Dec. 1981,
pp. 445-480.

