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Abstract 

This paper describes the challenges of making portable 
calculations across different architectures, and how 
the Ada model addresses the issues. 
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1   What is numerical analysis? 

All programming languages feature so-called “real” types. 
However, these types are very different from mathematical 
reals. The mathematical set  cannot be represented on a 
computer: it has an infinite number of values, even for a 
bounded segment. A computer can represent only types with 
a finite number of values, and these values can be (at most) 
rational numbers, since there is no finite representation of 
irrational numbers. 

However, computers are intended to perform computations 
for the real world, and if you want to compute the 
circumference of a circle given its radius, you will need , 
which is irrational! 

Therefore, we can define numerical analysis as the art of 
making not too wrong computations in the real world, using 
only the finite subset of rational numbers that a computer can 
handle. 

Moreover, since the result is not exact, it is important to be 
able to compute how wrong (or more precisely uncertain) the 
result is. 

2   Hardware formats and languages 

There are many ways of representing real numbers on a 
computer For example, [1] describes 76 different floating 
point formats! Moreover, there are often several available 
formats on a given computer, allowing various trade-offs 
between range, accuracy, and memory space. For example, 
the popular IEEE-754 standard [2,3] features 5 standard 
formats, (3 binary, 2 decimal), + extensions. The old 
DEC/Vax architecture is another interesting case, as pictured 
in figure 1: 

Size Exponent Mantissa 

32 bits 8 23 

64 bits 8 55 

 11 52 

128 bits 15 112 

Figure 1 VAX floating point formats 

Note that there are two different 64 bits format, one with 
more accuracy (longer mantissa) and the other one with 
more range (longer exponent). Talking about “short” or 
“long” floats cannot describe this situation. 

Actually, the notion of short or long floats dates back to the 
early times of Fortran, when most computers had only two 
floating point formats. Most today’s languages still define 
various floating point types just by the size of the type, 
without any idea of the actual accuracy (or range) implied by 
the type, and no definition of the accuracy of computations. 

The IEEE-754 standard tried to address these issues by 
defining a number of standard formats and the associated 
accuracy, including a precise definition of arithmetic: two 
computers implementing the standard will give exactly the 
same results. However, the relation to programming 
languages is delegated to the programming language 
standard, including the means to adjust a certain number of 
features (like exceptions). And from a programmer’s point 
of view, the issue of portability for computers that do not 
implement the standard remains. 

3   Ada model and real types 

3.2   Model of arithmetic 
The Steelman requirements [4] called for both 
“approximate” and “exact” computations whose accuracy 
could be chosen by the user, independently of the underlying 
architecture. 

The solution offered by Ada is inspired by the notion of 
approximate values in physics: a value does not stand only 
for itself, but represents a small range of values 
corresponding to an uncertainty around the value. Based on 
this, a range arithmetic can be defined, the so-called Brown’s 
model [5]. 

Physicists use two kind of approximations: absolute 
approximations, where the uncertainty is the same for the 
whole range of values (i.e. value is 5V±0.1V), and relative 
approximations where the uncertainty is proportional to the 
value (i.e. value is 5V±1%). Similarly, Ada offers two kind 
of real types: fixed point types corresponding to absolute 
approximation, and floating point types corresponding to 
relative approximation. 

The syntax of the definition of a fixed point type is as 
follows: 

-- Binary fixed 
type name is delta step range min .. max; 
type Volts is delta 0.01 range 0.0 .. 100.0; 
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-- Decimal fixed 
type name is delta step digits number_of_digits 
   [ range  min .. max ]; 
type Euros is delta 0.01 digits 11; 

The syntax of the definition of a floating point type is as 
follows: 

type name is digits number_of_digits [range min..max]; 
type Length is digits 5 range 0.0..40.0E6; 

Unlike most other languages, the programmer does not 
choose one of the types provided by the computer, but 
expresses the requirements on the mathematical properties 
of the type. It is up to the compiler to choose an appropriate 
machine type that fulfils the requirements. 

The definition of an Ada real2 type defines a set of values, 
called model numbers that must be represented exactly on 
every implementation. If no machine type is available that 
satisfies the declaration (i.e. that can represent exactly all 
model numbers), the declaration is rejected by the compiler. 
The machine type chosen by the compiler may include more 
values than the model numbers: these extra values are called 
machine numbers and provide more accuracy than the 
minimum guaranteed by the declaration. 

Since the programmer specifies the requirements for 
accuracy and range, the compiler can choose the most 
appropriate among all available machine types. 

This defines the accuracy of the definition of data. In 
addition, if the compiler implements the numerics annex, 
there are additional requirements on the accuracy of 
operations, including for the functions provided by the 
numerical libraries: elementary functions, linear algebra, and 
random number generators. 

The principle of these requirements, following Brown’s 
model, is as follows: 

 If both operands are model numbers and the 
mathematical result of the operation is a model number, 
then the computed result must be that model number, 
exactly. 

 Otherwise, if the mathematical result lies between two 
model numbers, the computed result can be any value 
belonging to the model interval bounded by the nearest 
model numbers that surround the mathematical result. 
This means that the compiler can keep more accuracy if 
hardware permits, but that the inaccuracy is bounded 
independently of the hardware. 

 The above principle is extended when both operands are 
only known to belong to some intervals: the 
mathematical operation is (formally) performed between 
all values of operands in their respective model intervals, 
thus defining a result interval that can extend over 
several model intervals, and is not necessarily bound by 

                                                           
2 Remember that the term "real" in Ada encompasses both floating point 
and fixed point types. 

model numbers; the computed result must belong to this 
result interval, extended to the nearest model numbers. 

This is basically like computing approximations in physics, 
except for the extra “digitalization noise” due to extending 
the intervals to the nearest model numbers. 

Note that with this model, there is no notion of underflow. 
Some arithmetic models make a special case when a 
mathematical result is not strictly zero, but the computed 
result is an exact zero. In Ada, this situation means that zero 
belongs to the result interval and is an acceptable result; it is 
not a special condition. 

As far as portability of computations is concerned, a program 
running on two different computers will not give the exact 
same result; however, both results will belong to an interval 
whose range can be computed independently of the 
implementation. What Ada guarantees is not an absolute 
result (which is meaningless anyway, since there is always 
some uncertainty), but portable bounds on the maximum 
error of computations. 

In addition, the standard requires that all static expressions 
be evaluated exactly; no error can be introduced at compile 
time by differences of evaluations within the compiler. 

3.3   Fixed point vs. floating point types 
All languages provide floating point types, and programmers 
are used to them. But few languages provide fixed point 
types, and people who are not familiar with them often do 
not consider their use. They constitute however an additional 
possibility of Ada that can often better match the problem 
domain than floating point types. Figure 2 shows a 
comparison of the respective model numbers of a fixed point 
type and of a floating point type: 

Figure 2 Floating points vs. fixed points model numbers 

Fixed point model numbers are evenly spaced, while floating 
point model numbers are very tight when close to zero, but 
lose (absolute) accuracy when away from zero. Fixed point 
types are often more appropriate to represent money or 
physical values, like readings from measurements devices. 
This is especially the case for time, where the zero value is 
arbitrary3, and there is no reason to provide more accuracy 
when getting closer to zero4. 

3.2   Numerical portabilities 
Portability of numerical computations is not a single goal. 
There are actually several kinds of numerical portabilities, 
as allowed by the Ada model. 

3 In Ada, the type duration is a fixed point type. 

4 Except for astronomers who model the big bang, of course… 
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For example, you may want to benefit from the “natural” 
types of your computer, and be able to determine the 
confidence range of your result. You will use predefined 
types, like Float or Long_Float. Knowing your algorithm and 
given the various attributes provided by Ada, a numerical 
analyst is able to determine the accuracy of the result. This 
can be called a posteriori portability: the same program run 
on machine A will print “PI=3.14+-0.05”, while on machine 
B it will print “PI=3.1415+-0.0005”. Both results are correct, 
although not identical. 

In other cases, you may have requirements on the accuracy 
of the result; for example, the maximum error on the 
computed speed of a vehicle must not exceed 5 km/h. Like 
any requirements, it should be provably met! Given the Ada 
model, your numerical analyst is able to determine the 
required accuracy (and range) of the data that are part of the 
computation. These can be expressed in Ada terms, and 
guaranteed by the implementation, independently of any 
architecture. This can be called a priori portability: different 
machines may give different results, but they will all be 
within the stated requirements. 

Conclusion 

For many programming languages, as soon as a numeric 
value includes a decimal point, the only choice is between 
short and long floats, which usually boils down to short 
floats if memory space is an issue, or long floats “just to be 
on the safe side” otherwise. Not exactly an engineered 
approach… 

Ada offers a rich range of real types that can provably match 
stated requirements and guarantee the maximum uncertainty 
of the computed results, independently of the underlying 
architecture. When it comes to choosing a programming 
language for a development, this aspect of Ada should really 
be more known to all those with requirements on the 
accuracy of computations. 
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