
155

Use of graph databases for static code analysis
Q. Dauprat1,2 Envelope �, P. Dorbec1, G. Richard1, JP. Rosen2

1: Université de Caen Normandie, Campus 2, Boulevard Maréchal Juin, 14000 Caen, France;
2: Adalog, 2 rue du Docteur Lombard, 92130 Issy les Moulineaux, France; email: 1:
{quentin.dauprat,paul.dorbec,gaetan.richard}@unicaen.fr; 2: {dauprat,rosen}@adalog.fr

Abstract

This paper deals with static code analysis. With analy-
sis needs becoming more and more complex, and code
volumes getting bigger and bigger, scalability of code
analysis tools is becoming one of the current challenges.
We explore the use of recent technologies, like graph
databases, to represent the source code and pattern
matching to find information into a graph. We hope
that this will reduce the time to analysis a source code
and improve the effectiveness of the analysis. When try-
ing to answer the same query compared to AdaControl,
we manage to find results that were missed by the pro-
gramatic approach. We expect further improvement on
future benchmarking.

Keywords: Ada, Static analysis, ASIS, graph databases,
Neo4J, AST

1 Introduction
In some activity sectors like industry (railway, avionics, space),
the life cycle of the programs can extend over several decades.
Over time, programs become huge and complex. With many
engineers working on the code, the needs of coding guid-
ance, and more generally, code analysis, is at the heart of the
concerns.

It is in this objective that code analysis tools were created.
This kind of software allows to check the quality of the code,
to validate the implementation, to find performance issues,
etc. Since their emergence in the 70s, static code analysis
tools kept working on the same structure to analyze the source
code, namely an Abstract Syntax Tree (AST). The problem
with AST is that we have often needs to re-explore previously
visited nodes (sub-tree) to find related information, a variable
to this declaration, a type to his definition, etc. We cannot
store the information when we firstly explore it, because we
do not know in advance what we really need, and this can take
a lot of memory. Therefore, AST is not perfectly suited to the
needs of static code analysis.

Furthermore, more and more needs for advanced analysis have
emerged [1,2,3], and, consequently, the complexity of analysis
induces a long analysis time. The scalability of static analysis
tools become one of the current challenges [4, 5].

Ada programming language is an interesting subject of study,
since all its complexity has been delegated to the compiler. As
a result, it is very difficult to compile, and the resulting AST

is heavy and complex, making it complicated to understand
and to query.

In this work-in-progress paper, we try to take advantage of
recent technologies (graph databases) to represent the source
code, with Code Property Graph (CPG) [6], and pattern match-
ing to find information into a graph. Our goal is to decrease
the time of analysis of a source code and improve the effective-
ness of the analysis. Lastly, Ada is a good starting point for
our study, and we hope that will lead us to provide a general
approach for static analysis of other programming languages.

2 Background
Code analysis is the process of analyzing a program (its source
code or its execution). Here, we focus on static analysis that
only analyzes the source code. It is mainly used for the com-
putation of code metrics (cyclomatic complexity, etc.) and
checking coding rules.

Nearly all static code analysis software works with a structure
which is globally the same: an Abstract Syntax Tree (AST).
This structure is generally provided by a compiler, or hand
built by this software. The resulting AST can be complex and
hard to query, especially in the case of Ada. Unfortunately,
we cannot provide a simple but complex (in terms of analysis)
example of such structures.

3 Approach
The main goal of this research is to take advantage of a new
way to represent a source code for static code analysis, with
the main objective of reducing the time of analysis, notably
for scalability.

3.1 Structures and definitions
Our approach is to use a directed graph to represent the code.
We call it a Code Property Graph (CPG) [6]. A property graph
is a directed graph where nodes and edges can have properties,
whereas in an AST only nodes have them. The following
figure shows an example of a property graph:

ACTED_IN
Role: Neo

Label: Person
Name: Keanu Reeves

Label: Movie
Name: The Matrix

ACTED_IN
Role: Trinity

Label: Person
Name: Carrie-Anne Moss

Figure 1: Example of a Property Graph

Ada User Journa l Vo lume 43, Numb er 3 , Septemb er 2022

https://orcid.org/0000-0003-1494-9033

156 Use of graph databases for s tat i c co de ana lys i s

We can see the CPG as a structure that encompasses AST, the
call graph (calls of subprograms), the dependency graph, and
many more, simply by adding relations between nodes of the
previous AST. The basic intuition is that we use additional
edges (with properties) to represent semantic and non-local
information. One simplest example is that we can add an
(usage) edge from any reference of a variable to the definition
of the variable. Enriching the graph with semantic information
allows thus easier checking properties. However, the main
challenge is the trade-off between the gain induced by using
the new edges and the cost resulting from the increase in
size of the graph. For the former, we identify below some
edges concepts that seems to be the most promising. For the
latter, the recent development of graph databases (see next
section) gives high hopes of keeping efficient queries. In fact,
our experiment search to give a realistic proof of concept to
validate the benefits of using CFG.

Furthermore, where in an AST we have a fixed starting node
(root of the node), that can be possibly split by compilation
units, with a graph, there is no fixed starting node. So we have
to choose from which node of the graph we want to start our
queries. This can be very convenient to target some kind of
nodes by using indexes.

By taking advantage of our experience at Adalog, we have
introduced new relationships that we found relevant from a
query point of view. These relationships are based on com-
mon usage we have to often deal with in static analysis, and
from which require deep search to find the corresponding
information. The added relationships are:

• CORRESPONDING_NAME_DEFINITION: Given
an expression of type Identifier, Operator Symbol, Char-
acter Literal or Enumeration Literal, this refers to where
its name has been defined.

• IS_OF_TYPE: Given a component, constant (derefer-
enced), discriminant specification, formal object, param-
eter (loop) specification, constant/variable return speci-
fication, simple tasks/variable protected object, element
iterator specification, object renaming declaration, this
refers to the type associated with this declaration.

• CORRESPONDING_INSTANCIATION: this indi-
cates whether an element is part of a generic instanti-
ation.

• CORRESPONDING_PARAMETER_-
SPECIFICATION: Given A_PARAMETER_-
ASSOCIATION this points out the corresponding
A_PARAMETER_SPECIFICATION. This is useful to
get all information about a parameter, notably since the
order of parameters can differ between the user and the
specification.

Nevertheless, we have to keep a number of kinds of relation-
ships as few as possible in order to not increase the size and
the time of creation of the database in a disastrous way.

3.2 Graph databases
In addition to this emerging structure, we can take advantage of
recent technologies for the scalability. With the rise of NoSQL
databases, one type of database appears to be particularly
suited to our needs : Graph Databases. A graph Database
(GDB) is a kind of non-relational database where data is stored
in a graph structure. This kind of database rely on pattern
matching to find information. Unlike relational databases,
there is no costly joins or foreign keys in a GDB. Here, we
can see relations as a pointer. Furthermore, where an AST
is stored in files or RAM, a GDB stores the graph in files
and RAM but in a way that makes it efficient for querying,
especially thanks to indexes.

We believe that the use of Graph Databases could solve current
problems of static code analysis, notably for the scalability,
and thus, its ability to quickly analyze a large volume of code.
Regarding the scalability, some studies [7,8] demonstrate that
GDB is easily scalable for representing the source code.

Nevertheless, GDB lack a standardized query language. In-
deed, there is no universal query language like SQL to query
any Graph Database Management System (GDBMS). How-
ever, a movement of standardization has been launched with
GQL (Graph Query Language) [9, 10] and an ISO normaliza-
tion is on the way.

In this study, we decided to use the Neo4j database. Neo4j
is a GDBMS written in Java. It is the world leader in di-
rected graph databases. It has its own query language, Cypher,
allowing expressing queries in ASCII art (visual) form, like
(node)-[RELATED_TO]->(anotherNodes), where parentheses
are used for nodes and braces for relationships. We do not
believe that the use of one graph database rather than another
has a significant impact on this research.

3.3 Thinking about the use of GDB versus the AST
approach

We think that the graph approach is interesting because, on
the one hand, we have to query the whole AST to get some
information, on the other hand, only a specific portion of the
graph is queried, thanks to indexes, which only contains the
nodes we are interested. To illustrate that the use of GDB
comes across as to be a promising approach, we introduce the
following example: Given a program, with multiple compila-
tions units, we want to list every declaration of a function that
returns a specific type �. With an AST, we have to traverse
the whole AST to find every function declaration, and apply
a filter to find every function that returns the � type. With a
GDB, we can directly target any function declaration nodes,
and apply a filter to find every function that returns the � type.

Now, a user may want to make another query, to control that
none of the function of a program returns a specific type �.
With an AST, we can make sure that the controls follow each
other, and thus, only traverse the AST once. Using GDB,
we can take advantage of another useful feature, the cache.
Since we have to start with the function declaration (like the
previous query), this result is stored in the cache and can be
reused with the new query.

Volume 43, Numb er 3 , Septemb er 2022 Ada User Journa l

Q. Dauprat , P. Dorb ec , G. R ichard , JP. Rosen 157

4 Experiments
4.1 Example of Ada code into Neo4j
As an illustration of our research, one example can be given
by the code below that is stored in Neo4j as depicted in the
figure:

package Pack is
A1, A2 : Integer;
A3 : Integer range 1..10 := 1;

end Pack;

−− Later in the program

Pack.A1 := Pack.A3;

Pack.A1 :=
Pack.A3;

Pack.A1 Pack.A3

Pack

Co
rre

sp
on

di
ng

 A
ss

ig
na

tio
n

Corresponding Name Definition

A1 Pack

Corresponding Name Definition

A3

T_Usage

Pack

Public
Part

A1, A2 :
Integer;

A1 A2

A3 : Integer
range 1..10 :=

1;

A3

Figure 2: Example of program stored into Neo4J

Note that in the figure, only some nodes are represented. Black
edges represent the ”IS_ENCLOSED_IN” relation, which is
the relation from one node to its parent. This is the only
relation which is present in the AST, all other (colored) edges
are relations we have created. The gray node is the starting
node, where we start the query.

With this tiny example, we could formulate the follow-
ing request: Given an assignment statement, I want
to access to the declaration of the assigned variable.
Using a GDB, we start by retrieving all assignment
statement (thanks to indexes), and we follow the added
relation CORRESPONDING_ASSIGNATION, then
CORRESPONDING_NAME_DEFINITION to finally go
to the parent node (using the dark arrow) to obtain the result.
Using an AST, we would have been forced to only use black
arrows. Furthermore, we have to start from the root node, and
exploring child in prefix order. When we find an assignment
statement, we have to explore the previously visited sub-tree
to retrieve the corresponding declaration. As a reminder, not
all the nodes of the graph are represented on the previous
figure, so the process of retrieving the node would be costly.

The next figure present the result of the following Cypher
query, which obtains the declaration of the variable from the
assignment of a variable:

MATCH (a:AN_ASSIGNMENT_STATEMENT)
<−[:CORRESPONDING_ASSIGNATION]−
(corrAssi :AN_IDENTIFIER)
−[:CORRESPONDING_NAME_DEFINITION]−>
(Id:A_DEFINING_IDENTIFIER)
−[:IS_ENCLOSED_IN]−>
(varDecl:A_VARIABLE_DECLARATION) RETURN ∗

Pack.A1 :=
Pack.A3; Corresponding Assignation Corresponding Name DefinitionA1 A1 A1, A2 :

Integer;

Figure 3: Result of the Neo4J query

Where we would have been forced to explore the whole AST to
find the usage of all variables, with a graph we can start from a
specific kind of node (the variable declaration for example, or
the variable assignment in the previous example) to retrieve all
information about the variables, without exploring the whole
graph. This is possible thanks to indexes, and because there
is no notion of ”root” for starting point in a graph, and thanks
to the extra edges in the graph.
4.2 Our experiment
To make our experiments measurable, we are trying to im-
plement some AdaControl’s rules, from simple rule, to more
complex, in terms of analysis. Currently, we try to answer
the following query: ”For each variable of a program, is the
variable is READ and/or WRITE?”

The first step will be to populate the database with an Ada
program. We started from the source code of AdaControl
where we have changed the analysis of rules by populating
the database. The goal of starting with the source code of
AdaControl is to reduce the time on prototyping, since Ada-
Control uses the Ada Semantic Interface Specification (ASIS)
in the core to query the source code. Thereafter, we wrote
the query using Cypher (the query language of Neo4j) and
compare the results with what AdaControl obtains.

The first experiment has revealed that our approach found
more results than AdaControl (AdaCtl 1.22r15). We note that
using Cypher and thus ”pattern matching” to query the code,
we found some cases that were forgotten in the traditional
(programmatic approach). This is due to a missing case in
AdaControl. The current query can find usage of variables in
any context (normal, in generic packages and in instantiation),
but it does not currently support usage within a renames, since
this case is tricky because of pointers, arrays, etc. that can be
hidden inside the renames.
4.3 Current limitations of our approach
Even if the use of the graph database is convenient for the scal-
ability and so, the response time, there are some drawbacks.

The first one is the extra time required for populating the
database compared to simply building the AST. Therefore,
we accumulate the time to create the AST by ASIS, plus the
time to traverse the whole AST again by adding relations
and sending it to Neo4j. Though we made no precise timing
comparison, our database initialization was visibly slower than
the computation of the AST. So, on the one hand, we can have
a quick answer to the query, but, on the other hand, the time
to populate the database is slow. We are currently focusing on
reducing code analysis time, and we do not take into account

Ada User Journa l Vo lume 43, Numb er 3 , Septemb er 2022

158 Use of graph databases for s tat i c co de ana lys i s

the time required to populating the database. An improvement
will be to populate the database during the creation of the
AST, but this will require to create our own parser or to use
a different library than ASIS, like libadalang to process the
source code. This is currently out of our research.

Secondly, though Cypher allows to express complex queries,
it is quite a verbose query language. Indeed, the query made
to answer our ”simple” question about usage of variable took
more than 200 lines, without considering the special case of
renames, that would probably double the number of lines. An
improvement could be to split the query into several elemen-
tary queries, or to generate the query using an intermediate
(programming) language.

Moreover, graph databases use pattern matching approach
to query the graph, compared to the tree traversal of tradi-
tional approach. Event if this approach allows finding some
missed case of traditional approach, we are not immune to
false negatives.

Finally, we have to keep the number of relationship types and
indexes as small as possible in order to reduce as much as
possible the impact in size of the database, to be more man-
ageable, and not to sky rocket the time required to populating
the database.

5 Related work
During the last decade, more and more research focused on the
representation of the code in order to perform code analysis,
but mainly for the search of vulnerabilities [6,11]. Even if [6]
focuses on vulnerabilities, it introduces Code Property Graph,
for which it is referenced in numerous research (more than
220). This research ([6]) led to the creation of a company
specialized in the detection of vulnerabilities in code. There
tool is fully based on the CPG introduced into their research.

In his thesis [5], Fan introduces three hard-to challenges: hard-
to-employ, hard-to-scale, and hard-to-be-recognized. Our
study is focused on the hard-to-scale challenge. He explored
different ways to improve the scalability, but the use of graph
databases has not been discussed. In [4], authors take advan-
tage of their experience and their industrial vision at Facebook
to provide an overview of current challenges and opportunities
of static and dynamic code analysis.

Ramler et al. [8] have studied the use of graph databases
for various kinds of code analysis, for Java, C, C++ and C#.
However, the tools used in the study sound proprietary or
non-disclosed.

Furthermore, some studies are focused on the query language.
Alves et al. [12] establish a comparison of different query
languages, but it looks like that the literature on this subject
is quite poor, and it is not our main problematic here.

6 Further Development
In this paper we demonstrate that the use of Graph DBMS
could be interesting for code analysis. We have formulated a
query to demonstrate the efficiency of this approach, but we
have not yet benchmarked this approach on a large volume
of code. Currently, some construct into the standard library
(GNAT version), cause some trouble when creating the graph.

We have to fix these problems before making a benchmark on
large volume of code.

The future work will be to provide a benchmark on large code
to validate the efficiency of our approach. We suppose that this
can be beneficial for large volumes of the code, but irrelevant
(slower) on small volumes compared to current approaches.
The first step will be to manage some construct that we can
see into the Ada standard library implementation provided by
AdaCore. Next, we will be able to perform a benchmark, by
comparing the execution time between a query made using a
graph versus the same rule with AdaControl.

We have to select a subset of AdaControl’s rules to perform
our benchmark, in order to have enough use cases to have a
relevant benchmark. We have to define a ”frontier” between
the programatic querying versus the GDBMS query language.
We have some insights regarding this problem. We can cut
the query into several ”elementary” queries (like ASIS), or,
we can generate the request through another language [13].
We could also add a way to make incremental updates, to only
update compilation units that have been modified. Another
development will be to switch from ASIS to libadalang for
the parsing. This will provide a compiler independent Ada
code analysis tool.

References
[1] Y. Xie and A. Aiken, “Saturn: A scalable framework

for error detection using Boolean satisfiability,” ACM
Transactions on Programming Languages and Systems,
vol. 29, p. 16, may 2007.

[2] T. Ball and S. K. Rajamani, “The SLAM project: Debug-
ging system software via static analysis,” in Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages - POPL '02, ACM
Press, 2002.

[3] “Coverity Scan.” https://scan.coverity.com/
projects/, 2018.

[4] M. Harman and P. O'Hearn, “From Start-ups to Scale-
ups: Opportunities and Open Problems for Static and
Dynamic Program Analysis,” in 2018 IEEE 18th Inter-
national Working Conference on Source Code Analysis
and Manipulation (SCAM), IEEE, sep 2018.

[5] G. Fan, Practical static code analysis : challenges, meth-
ods, and solutions. PhD thesis.

[6] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and discovering vulnerabilities with code property
graphs,” may 2014.

[7] R.-G. Urma and A. Mycroft, “Source-code queries with
graph databases—with application to programming lan-
guage usage and evolution,” Science of Computer Pro-
gramming, vol. 97, pp. 127–134, jan 2015.

[8] R. Ramler, G. Buchgeher, C. Klammer, M. Pfeiffer,
C. Salomon, H. Thaller, and L. Linsbauer, “Benefits and
drawbacks of representing and analyzing source code
and software engineering artifacts with graph databases,”
pp. 125–148, dec 2018.

Volume 43, Numb er 3 , Septemb er 2022 Ada User Journa l

https://scan.coverity.com/projects/
https://scan.coverity.com/projects/

Q. Dauprat , P. Dorb ec , G. R ichard , JP. Rosen 159

[9] R. Angles, A. Bonifati, S. Dumbrava, G. Fletcher, K. W.
Hare, J. Hidders, V. E. Lee, B. Li, L. Libkin, W. Martens,
F. Murlak, J. Perryman, O. Savković, M. Schmidt, J. Se-
queda, S. Staworko, and D. Tomaszuk, “PG-keys: Keys
for property graphs,” in Proceedings of the 2021 Inter-
national Conference on Management of Data, ACM, jun
2021.

[10] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li,
L. Libkin, T. Lindaaker, V. Marsault, W. Martens,
J. Michels, F. Murlak, S. Plantikow, P. Selmer, H. Voigt,
O. van Rest, D. Vrgoč, M. Wu, and F. Zemke, “Graph
pattern matching in gql and sql/pgq,” Dec. 2021.

[11] A. Ponomarev, H. S. Nalamwar, and R. Jaiswal, “Source
code analysis: Current and future trends challenges,”
vol. 685, pp. 877–880, feb 2016.

[12] T. L. Alves, J. Hage, and P. Rademaker, “A comparative
study of code query technologies,” sep 2011.

[13] T. Zhang, M. Pan, J. Zhao, Y. Yu, and X. Li, “An open
framework for semantic code queries on heterogeneous
repositories,” in 2015 International Symposium on The-
oretical Aspects of Software Engineering, IEEE, sep
2015.

Ada User Journa l Vo lume 43, Numb er 3 , Septemb er 2022

	Introduction
	Background
	Approach
	Structures and definitions
	Graph databases
	Thinking about the use of GDB versus the AST approach

	Experiments
	Example of Ada code into Neo4j
	Our experiment
	Current limitations of our approach

	Related work
	Further Development

