Ada, Interfaces and the Listener paradigm

J-P. Rosen*

Adalog
19-21, rue du 8 mai 1945
94110 ARCUEIL
jean-pierre.rosen@adalog.fr

Abstract. It is often claimed that interfaces, as provided by Java, are a
must for AdaQY. In this paper, we explain what interfaces are, and show
equivalent constructs using Ada’s “building blocks” approach. We focus
then on one particular usage of interfaces, namely the listener paradigm.
We detail various solutions to this problem, and show that interfaces are
far from being the only, nor even the best, solution in many cases. We
conclude that although interfaces are conceptually an interesting feature,
their importance for AdaQY should not be overestimated.

1 Introduction

We assume in this paper that the reader is reasonably familiar with Ada, but
not necessarily with Java; therefore, we start by exposing what interfaces and
other relevant features of Java are, then we explore the needs that are fullfilled
by interfaces, and finally show how the same needs can be addressed in Ada.

This paper gives in places a view of inheritance which is quite different from
what is generally considered as accepted. We understand that many people will
not necessarilly agree with the ideas presented here; we only hope to provide
some new food for thoughts.

2 Inheritance Revisited

When introducing the basic mechanisms of inheritance, it is customary to explain
that there is a parent class, that provides data fields and methods, from which a
child class is derived. The child class has the same data fields and methods as its
parent; they are thus said to be inherited. In addition, if some of the inherited
methods are not appropriate to the child class, they can be redefined; i.e. the
child class provides a different behaviour for the same method. Incidentally, we
notice that a method is either inherited or redefined, but can never disappear;
all descendants of a class have (at least) the same methods as their ancestors.

This way of presenting inheritance is consistent with the so-called delta-
programming paradigm: a child class is viewed as a slight modification in be-
haviour from an existing class. However, it is possible to give a different flavour
to inheritance by presenting it as follows:

* Many thanks to R. Riehle for reviewing an early version of this paper

A parent class defines a set of properties that are shared by all its de-
scendents. For example!, all animals can eat. Therefore the class of all
animals provides an Eat method. Then, each particular animal must
define how it eats, by giving its own definition of Eat. That’s why op-
erations of a class are called methods: each class defines its own way of
doing some basic operation. However, it may happen that all sub-classes
of a given class share the same way of doing something; for example,
all varieties of dogs use the same method for eating. Therefore, the Dog
class can provide a default implementation of Eat, that will be shared
by all subclasses, unless it is explicitly overridden.

In this second presentation, we focus on a common interface which is guar-
anteed to be provided by all the descendants of a class; inheritance of methods
appears only as a secondary feature, a kind of default value that can, but needs
not be provided by the ancestor. Actually, most OO programming languages
provide abstract methods which are simply methods for which no default is pro-
vided, and therefore must be redefined by descendants.

Of these two aspects of inheritance, the guaranteed interface is clearly the
most important feature; this is what allows polymorphism, the ability for a vari-
able to designate values of a type that is not statically known, and still apply
relevant operations to it.

3 Important Java Features

3.1 Interfaces

A Java interface is simply inheritance restricted to its first aspect: the defini-
tion of a set of provided methods, without any default values for them. A class
that implements an interface promises to provide the methods defined by the
interface. For example, a simple interface would look like this:

public interface Enumeration { // From package java.util
public boolean hasMoreElements ();
public Object nextElement () throws NoSuchElementException;

}

We can now define a method which is applicable to any class that implements
the Enumeration interface:

//This method prints all elements in a data structure:
void listAll (Enumeration e) {
while e.hasMoreElements ()
System.out.println (e.nextElement());

In a sense, an interface is nothing but an abstract class that defines no data
fields, and whose methods are all abstract. But actually, it can be argued that

1 Sorry for this overused example!

interfaces are not connected to inheritance at all, and are even the contrary of
inheritance: it is just a contract that can be obeyed by several classes, without
requiring any conceptual dependency between classes that implement a given
interface. In short, inheritance corresponds to a is a relationship, while interfaces
correspond to a provides relationship.

The major benefit of interfaces is that variables can be declared of an in-
terface type, and can refer? to any object that implements the interface. Only
the methods defined for this interface are available through such a variable. For
example:

class DataStructure implements Enumeration {...}
Enumeration E;

E = new DataStructure ();

Of course, the implementation of the methods promised by Enumeration
have full visibility on all the internals of the class DataStructure.

3.2 Inner Classes

Another important feature of Java, that appeared with Java 1.1, is the notion
of inner class. An inner class is a class that is defined within another class. The
constructor for such a class is actually a method provided by its enclosing class;
as such, an object of the inner class must be created by applying the constructor
to an object of the enclosing class. The newly created object is then in some sense
hard-wired to the object that served to create it. The inner class has visibility
to all components of this parent object.

Here is an example of an inner class, and of the creation of an inner object:

class External {
public class Internal {...}
}

External ext = new External ();
External.Internal ei= ext.new Internal ();

3.3 Equivalence of Interfaces and Inner Classes

Any use of interfaces can be replaced by an equivalent structure that uses only in-
ner classes. We’ll show this on an example. Imagine an interface called Wakeable
that provides a method everySecond. A class implementing this interface can
register itself to a scheduler, that will call its everySecond method every second.
The outline of this is as follows:

2 In Java, all variables (except for elementary types) are references (i.e. pointers) to
objects.

interface WakeableInterface {
void everySecond ();
}

final class Scheduler {
static void Register (WakeableInterface p) { ... }
}

Using interfaces, a periodic class would look like this (note that the construc-
tor registers the current object to the scheduler):

class Periodic implements WakeableInterface {
public void everySecond () { ... }
void Periodic () { Scheduler.Register (this); }

}

However, the following scheme, which uses only classes (and inner classes) is
equivalent:

public abstract class WakeableClass { // class, not interface
abstract void everySecond ();
}

final class Scheduler {
static void Register (WakeableClass p) { ... }
}

class Periodic {
class localWakeable extends WakeableClass { // Inner class
public void everySecond () { ... }
}

localWakeable 1 = new localWakeable (); // local inner object
void Periodic () { Scheduler.Register (1); }

Note that the method everySecond can use the name Periodic.this to
access the fields of the enclosing object, and has the same visibility scope, and
can access the same elements, as its counterpart made from an interface. From a
philosophical point of view, it is slightly different; in the interface case, the object
provides the functionality (everySecond) itself, while in the second case the
functionality is delegated to a sub-object. However, both solutions are technicaly
equivalent.

4 The Ada Building-Block Approach

To understand the remaining of this discussion, it is very important to remember
the basic building block approach of Ada. In Ada, there is no such thing as classes
(in the usual sense), friends, or even interfaces defined in the language. All these
usual constructs are built from the combination of basic building blocks.

The Ada approach can be understood by comparing Leg0® blocks to Play-
mobil® pieces. The great versatility of Lego blocks comes from the fact that
the same piece can be used to build very different elements; for example, the
same round plate is used to build an antenna in the Space Lego, a shield in
the Middle-Age Lego, or an umbrella in the Lego village. On the other hand, a
piece from a Playmobil set is very specialized and cannot be used in a different
context than its initial box.

Ada typically works like Lego blocks; a class is neither a package nor a tagged
type. It is a design pattern, where a package declares only a tagged type and its
associated operations. Friends (in the C++ sense) are made by declaring several
related tagged types in the same package, etc. Although this approach requires
a bit more effort from the programmer, it allows the building of constructs not
available in other languages without new syntax.

When told about the Ada way of doing things, people often react by saying
that it is only a workaround for compensating the lack of such-and-such feature
in Ada; it is not. It is a different approach to building various mechanisms,
that allows almost any paradigm to be used without requiring additions to the
language.

5 A Design Pattern for Interfaces in Ada

In this section, we show that it is possible to define a design pattern in Ada
that matches closely the notion of Java interfaces - or more precisely, the inner
classes that are equivalent to a Java interface.

Since we try to mimic the way Java works, we use limited types that we
manipulate through pointers. Of course, other design patterns are possible that
would not require these pointers. We do not address at this point the issue of
interfacing with Java, but only the one of providing an equivalent feature.

Given that:

— an interface is equivalent to an abstract class with abstract methods;

— the usual way of adding a “facet” to an Ada tagged type is through instan-
tiation of a generic;

— generic formal parameters can already express the notion that a data type
must provide a set of operations;

we can express the interface from the previous example as described in the
next listing®. Note that the body is relatively simple, but requires some care in
order not to violate accessibility rules!

The type Wakeable_Interface.Instance expresses the properties of the
interface. An instantiation of the generic package Implements_Wakeable on a
tagged type that provides the necessary Every_Second procedure will provide a

8 We use here the convention advocated in [5], where the package is given the name of
the class, the main (tagged) type always has the name “Instance”, and the associated
pointer type the name “Handle”

package Wakeable_Interface is
type Instance is abstract tagged limited null record;
type Handle is access all Instance’Class;
procedure Every_Second (This : access Instance) is abstract;

—— A type with an Every_Second operation can implement
—— the interface by instantiating the following generic:
generic
type Ancestor is tagged limited private;
with procedure Every_Second (Item : access Ancestor) is <>;
package Implements_Wakeable is
type Instance is new Ancestor with private;
type Handle is access all Instance’Class;
function Wakeable_Of (Item : access Instance)
return Wakeable_Interface.Handle;
function Full_Object_Of (Item : Wakeable_Interface.Handle)
return Handle;
private
type Inner_Type (Enclosing : access Instance) is
new Wakeable_Interface.Instance with null record;
procedure Every_Second (This : access Inner_Type);

type Instance is new Ancestor with
record
Inner_Instance : aliased Inner_Type (Instance’Access);
end record;
end Implements_Wakeable;
end Wakeable_Interface;

package body Wakeable_Interface is
package body Implements_Wakeable is
procedure Every_Second (This : access Inner_Type) is
begin
Every_Second (Ancestor(This.Enclosing.all)’Access);
end Every_Second;

function Wakeable_Of (Item : access Instance)
return Wakeable_Interface.Handle is
begin
return Item.Inner_Instance’Access;
end Wakeable_Of;

function Full_Object_Of (Item : Wakeable_Interface.Handle)
return Handle is
begin
return Inner_Type (Item.all).Enclosing.all’Access;
end Full_Object_Of;
end Implements_Wakeable;
end Wakeable_Interface;

new tagged type which is the original one with the addition of the interface. The
function Wakeable_0f returns a handle associated to an object, which is usable
to manipulate it as a Wakeable object; conversely, the function Full_Object_0f
returns a handle to the full object, given a handle to the interface.

Here is how we would declare a class Datal, then use the generic to provide
the class that implements this interface:

package Datal is
type Instance is tagged limited private;
type Handle is access all Instance’Class;

procedure Init (Item : access Instance; Value : Integer);
procedure Processing (Item : access Instance);
procedure Every_Second (Item : access Instance);
private
type Instance is tagged limited
record

Value : Integer;
end record;
end Datal;

with Wakeable_Interface; use Wakeable_Interface;
package Datal.Wakeable is
new Implements_Wakeable (Datal.Instance);

Note that since the type Datal features an Every_Second procedure, it is
automatically selected by the instantiation, but that, unlike Java interfaces, the
operation provided for the implementation of Every_Second needs not have
the same name; for example, the instantiation could have explicitly mentioned
Processing. This can be handy in some situations, like having the same opera-
tion provided for the implementation of two different interfaces.

Finally, here is an example of a program using this data type. Note that
the value is created as a Datal, and then manipulated as a Wakeable; we also
demonstrate that we can go back from a Wakeable to a Datal :

with Datal.Wakeable, Wakeable_Interface;
procedure Example is
use Datal, Datal.Wakeable, Wakeable_Interface;
Handle_1 : Datal.Wakeable.Handle;
Handle_2 : Wakeable_Interface.Handle;
begin
Handle_1 := new Datal.Wakeable. Instance;
Init (Handle_1, 5);

Handle_2 := Wakeable_Of (Handle_1);
Every_Second (Handle_2);

Processing (Full_Object_Of (Handle_-2));
end Example;

With this design pattern, the declaration of the interface is more verbose
(complicated?) than its Java counterpart; declaring that a type implements the
interface just requires a simple instantiation; and wusing the data type, either
normally or as an interface, is extremely simple. This is the usual trade-off with
the building-block approach: the extra complexity required by not having the
construct readily available is charged on the designer of the abstraction, but
there is almost no cost to the user.

6 What Are Interfaces Used For in Java?

The previous section showed a design pattern that allows the same programming
style in Ada as in Java. However this does not imply that all uses of interfaces
in Java must use this pattern in Ada. In Java, interfaces are used for different
purposes:

Flags. Java features some empty interfaces, i.e. interfaces that declare no meth-
ods. Classes can implement these interfaces just to flag that they allow cer-
tain operations. For example, every object features a clone method to du-
plicate itself, but the method will throw an exception unless the class specif-
ically allowed it by declaring that it implements the interface Cloneable.
This is clearly more a programming trick than a proper usage of interfaces:
what does it mean for a class to promise that it implements... nothing?

Simple interfaces. These are truly interfaces, i.e. a promise that the class
features some properties. Interfaces like Serializable (the class can be
written to a file) or Comparable (objects can be compared) fall into that
category. It is easy to understand that, for example, a file object can handle
any object that implements Serializable. The above design pattern can
be used in that case, although often the same effect can be achieved using
simple generics.

Restricted multiple inheritance. In Java, a class can inherit from only one
class, but can implement any number of interfaces. If we give the meaning to
an interface that every class that implements it is considered as belonging to
a class of objects, then this usage can be considered as an implementation of
multiple inheritance. The benefits over full MI is that since all methods of an
interface must be redefined, there can’t be two default implementations for
the same method at the same time, therefore avoiding the issue of repeated
inheritance. Once again, this kind of usage can be achieved in Ada by using
the previous programming pattern.

Listeners. This is a paradigm where there are occurrences of some events in
the system, and one or several objects need to take some action in response
to the event. They are said to listen to the event. The construct that will
trigger these actions is called the notifier: it can be a programming object,
but also a hardware interrupt for example. Typical listeners are found in the
management of interrupts, mouse events, clock events, dialog buttons... The
notion of event is not necessarily connected to an external event; it can be
a simple state change in an object[3], as in OO data bases.

7 Various Implementations of the Listener Paradigm

Note first that from a conceptual point of view, listeners are active objects: they
can have actions that are invoked asynchronously, and care must be taken about
concurrent access to the methods that they offer.

Two basic mechanisms are associated to the listener paradigm: there must
be a registration process (with the associated deregistration process), to make
the notifier aware of all possible listeners, and a delivery process to trigger ap-
propriate actions in each listener when the event occurs. Of course, the notifier
should have no a priori knowledge of who the listeners are. Typically, it will
maintain a linked list of listeners, and call the delivery method on each of them
each time the event occurs.

7.1 Call-Backs

Historically, the first examples of the listener paradigm were for handling in-
terrupts, or for dealing with events from user interfaces, like connecting some
processing to a mouse click on a button. Most of the time, the programming
language used (assembly, C) had no tasking feature. Therefore, the first mecha-
nism was call-backs: a procedure is associated to the event. Registration consists
in passing a pointer to the procedure to the notifier, and the notifier issues an
indirect call to the procedure whenever the event happens. This mechanism is
still the most common one for hardware interrupts.
Since Ada has pointers to subprograms, this solution can be used directly.

7.2 Extended Call-Backs: Interfaces

The previous solution falls short when there are several related events, with
different processings that have to be registered at the same time. For example,
one might want to register different call-backs depending on whether a button
is clicked on with the left, middle or right button.

It is of course possible to register multiple call-backs; but a set of subprograms
connected to a given entity is exactly the definition of an interface; it is therefore
more convenient to define an interface, and to register the interface as a whole.
For example, our Wakeable interface can be defined as follows, if we want various
operations to be performed every second, minute, or hour:

interface WakeableInterface {
void everySecond ();
void everyMinute ();
void everyHour (0);

}

It is often argued that interfaces are much better than call-backs, even when
the interface features only one method. This is because in C, registering a call-
back is done by providing the address of a function, without any kind of checking
about the conformance of parameters. Interfaces ensure that the profile of the

provided functions match the required profile. But of course, in Ada, pointers
to subprograms must be consistent with the expected usage, so the added value
of interfaces is much smaller. Therefore, it is much more acceptable in Ada to
register multiple call-backs, and interfaces are not necessary in this case.

7.3 Generics

It is often the case that there is only one listener to a given event. This idiom
can be very simply implemented by making the notifier generic, with the noti-
fied procedure as a generic parameter. For example, the scheduler that handles
Every_Second events could be declared as:

generic
with procedure Every_Second;
package Scheduler is

end Scheduler;

Note that we could as well provide several procedures as formal parameters,
if the notifier was serving several events.

7.4 Tasking

In all the previous idioms, the processing of events was done by (aysnchronously)
calling a procedure. However, as noted above, this is really an active behaviour,
and it seems natural to model this with tasks. Actually, if the call-back mech-
anism (and variants) is in so wide-spread use, it is because at the time where
GUI appeared that made an intensive use of listeners, most languages had no
concurrency.?

Polling A first possibility is for the notifier to provide a function that tells
whether a new event has arrived, or a function that returns the next event, with
a special null_event if none has occurred. The listener will actively sample the
notifier for events (this is how the main loop of GUIs behaves generally) :

task body Listener is

begin
loop
Event := Notifier.Get_Next_Event;
case Event is

when Null_Event =>
delay 0.1;
end case;
end loop;
end Listener;

4 with the notable exception of Ada, of course!

This idiom is not appropriate when there are several listeners, since the
notifier would have to deliver the last event that occurred to any task that
requests it; however, it would be very difficult to avoid delivering the same event
twice to the same listener. In practice, the notifier will rather reset the current
event as soon as it has been delivered once. On the other hand, it is easy for the
listener to poll various notifiers until an event is delivered, allowing it to process
multiple kinds of events.

Entries A notifier can be viewed as an event server, in which case it is natural
to represent it as a task or protected object. Listeners will get events in the same
way as with the previous idiom; however, Get _Event will typically be an entry
rather than a subprogram. This implies two main differences:

— The listener will block until an event is available. This means that no active
loop is necessary.

— When an event occurs, the notifier can deliver the event to all listeners that
are currently queued. With a protected object, it is quite easy to ensure that
no race conditions can occur if one of the listeners returns to the point where
it requests an event before all listeners have been notified. With tasks, this
can be ensured using requeue or entry families, although not as easily.?

8 Comparison of the Various Implementations of the
Listener Paradigm

Idioms based on procedure calls are sequential according to Booch’s taxonomy|[2],
i.e. there must be an external synchronization mechanism to ensure that the
state of the object is not modified by another procedure while the object is
being notified of an event, while idioms based on tasks are naturally concurrent.

Idioms based on tasking have the nice feature that there is no need for a
registration mechanism: the task simply requests an event when it is in a state
that allows it. The generic idiom is a purely static solution: there is no need
for registration either, and the region where the listener is active is entirely
determined at compile time by scoping rules.

Whether it is useful to allow more than one listener really depends on the
application; although this is a must in some contexts, it can be nice in other
cases to be able to ensure that an event can be processed by only one listener.

Table 1 summarizes the properties of each solution. As usual, there is no
single “best” solution to the listener paradigm. Which idiom to use should be
determined by the application needs.

5 Sorry, the algorithm is a bit long for this paper; please contact the author if inter-
ested.

Table 1. comparison of the various idioms for the listener paradigm

Idiom Active? Registration|Multiple Multiple
listeners| events
Call-back No Explicit Yes No
Interface No Explicit Yes Yes
Generic No Static No Yes
Task, Polling||Yes, not blocking| Automatic No Yes
Task, Entry || Yes, blocking | Automatic Yes No

9 Proposal for Ada0Y

There is a proposal for an amendment (AI-00251)[1] that would allow the equiv-
alent of interfaces in Ada. Basically, a tagged type could be derived from several
types, all of which, except the first one, would be required to be abstract with
only abstract operations. The canonical example from the Al is:

type Stack is abstract; —— An abstract interface type
—— ... Operations on Stack

type Queue is abstract; —— Another interface.
—— ... Operations on Queue

type Deque is abstract new Queue and Stack;
—— An interface which inherits from both
—— the Queue and Stack interfaces.
—— ... Operations on Deque

—— An extension that implements an interface
type My_Deque is new Blob and Deque with
record
—— Conventional type implementing an interface.

end record;

The proposed implementation model is very close to what is proposed in
section 5: the tagged type would contain pointers to the various dispatching
tables.

Note that although this would be convenient, especially for interfacing to
Java, current compilers are able to recognize constructs that are “close enough”
to map Java interfaces. For example, the Aonix® compiler help file explains
that:

An Ada tagged limited type “claims” that it implements an interface by
including in its list of components an aliased component of the interface
type.

10 Conclusion

We have argued already [4] that the fact that other languages rely only on
inheritance as the implementation mechanism for a number of concepts does not
mean that the same should apply to Ada, given its much richer set of features.
We have shown here that the fact that Java uses interfaces in various ways, and
especially for all cases of listeners, should not be used to conclude that it is
always the most appropriate paradigm in Ada.

Java interfaces are a useful concept, and the idea of ”promised interface”
is certainly an attractive feature. Moreover, since there are Ada compilers that
target the JVM, it is important to define how to access Java interfaces from Ada.
However, although there is nothing in Ada that maps directly to Java interfaces,
we have shown in this paper that existing Ada constructs provide solutions to
the problems that Java interfaces address. Therefore, we claim that there is no
technical requirement for adding interfaces to Ada. It would only be syntactic
sugar, since equivalent constructs can be built using current features.

But it must be remembered that sometimes, sugar (i.e. new building blocks)
"helps the medicine go down”... Finding ready-to-use features in a language
makes it easier to use, but having too many of them increases complexity. The
real issue is therefore where to draw the line between building blocks and special-
ized pieces, and this is certainly not easy. Lego blocks allow much more creativity
than Playmobil pieces®, but even Lego has provided more and more sophisticated
blocks over time...

In conclusion, we claim that the issue of adding interfaces in Ada0Y needs
investigation, at least for interfacing with Java, but that the technical need is
less important than often advocated.

References

1. http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Als/AI-00251. TXT

2. Booch, G.: Software Components with Ada, Benjamin Cummings Company, Menlo
Park, 1987

3. Heaney, M.: “Implementing Design Patterns in Ada 95”7, Tutorial, SIGAda 2000
conference.

4. Rosen, J-P.: “What Orientation Should Ada Objects Take?”, Communications of
the ACM, Volume 35 #11, ACM, New-York.

5. Rosen, J-P.: “A naming Convention for Classes in Ada 9X”, Ada Letters, Volume
XV #2, March/April 1995.

5 Admitedly, this is a personal opinion!

